[1] Floridi L, Chiriatti M. GPT-3: Its nature, scope, limits, and
consequences[J]. Minds and Machines, 2020, 30: 681-694.
[2] Liu Y, Zhang K, Li Y, et al. Sora: A review on background,
technology, limitations, and opportunities of large vision
models[J]. arXiv preprint arXiv:2402.17177, 2024.
[3] Fabio D.Number of ChatGPT Users (Dec 2024) [EB/OL].
[2024-12-10].
https://explodingtopics.com/blog/chatgpt-users
[4] M. Deng, J. Wang, C.-P. Hsieh, Y. Wang, H. Guo, T. Shu,
M. Song, E. P. Xing, and Z. Hu, “Rlprompt: Optimizing
discrete text prompts with reinforcement learning,” arXiv
preprint arXiv:2205.12548, 2022.
[5] T. Shin, Y. Razeghi, R. L. L. IV, E. Wallace, and S. Singh,
“Autoprompt: Eliciting knowledge from language models
with automatically generated prompts,” in Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, November
16-20, 2020, B. Webber, T. Cohn, Y. He, and Y. Liu, Eds.
Association for Computational Linguistics, 2020, pp.
4222–4235.
[6] Biester F, Del Gaudio D, Abdelaal M. Enhancing
Knowledge Base Construction from Pre-trained Language
Models using Prompt
Ensembles[C]//KBC-LM/LM-KBC@ ISWC. 2023.
[7] Yao H, Lou J, Qin Z, et al. Promptcare: Prompt copyright
protection by watermark injection and
verification[C]//2024 IEEE Symposium on Security and
Privacy (SP). IEEE, 2024: 845-861.
[8] Ren H, Yan A, Gao C, et al. Are You Copying My Prompt?
Protecting the Copyright of Vision Prompt for VPaaS via
Watermark[J]. arXiv preprint arXiv:2405.15161, 2024.
[9] Zheng Z, Xie S, Dai H N, et al. Blockchain challenges and
opportunities: A survey[J]. International journal of web
and grid services, 2018, 14(4): 352-375.
[10] Mohanta B K, Panda S S, Jena D. An overview of smart
contract and use cases in blockchain technology[C]//2018
9th international conference on computing, communication
and networking technologies (ICCCNT). IEEE, 2018: 1-4.
[11] 王群, 李馥娟, 倪雪莉, 等. 区块链数据形成与隐私威
胁[J]. 计算机工程, 2023, 49(8): 1-12.
WANG Q, LI F J, NI X L, et al. Data formation and
privacy threat of blockchain[J]. Computer Engineering,
2023, 49(8): 1-12. (in Chinese)
[12] 旋逸昭, 赵红武, 金瑜. 一种基于双链的区块链共识机
制[J]. 计算机工程, 2024, 50(5): 139-148.
XUAN Yizhao, ZHAO Hongwu, JIN Yu. A
Dual-Chain-Based Consensus Mechanism for
Blockchain[J]. Computer Engineering, 2024, 50(5):
139-148.
[13] 倪雪莉, 马卓, 王群. 区块链矿池网络及典型攻击方式
综述[J]. 计算机工程, 2024, 50(1): 17-29.
Xueli NI, Zhuo MA, Qun WANG. Overview ofBlockchain Mining Pool Networks and Typical Attack
Modes[J]. Computer Engineering, 2024, 50(1): 17-29.(in
Chinese)
[14] Gervais A, Karame G O, Wüst K, et al. On the security and
performance of proof of work
blockchains[C]//Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security.
2016: 3-16.
[15] Masla N, Vyas V, Gautam J, et al. Reduction in gas cost for
blockchain enabled smart contract[C]//2021 IEEE 4th
International Conference on Computing, Power and
Communication Technologies (GUCON). IEEE, 2021:
1-6.
[16] 王东清,芦飞,张炳会,等.大语言模型中提示词工程综述
[J/OL]. 计 算 机 系 统 应
用,1-10[2024-12-21].https://doi.org/10.15888/j.cnki.csa.00
9782.
Dongqing W, Fei L, Binghui Z, et al. Survey on Prompt
Engineering in Large Language Model[J]. Computer
Systems & Applications,
1-10[2024-12-21].https://doi.org/10.15888/j.cnki.csa.0097
82.(in Chinese)
[17] Kojima T, Gu SS, Reid M, et al. Large language models
are zero-shot reasoners. Proceedings of the 36th
International Conference on Neural Information
Processing Systems. New Orleans: Curran Associates Inc.,
2024. 1613.
[18] Yao SY, Yu D, Zhao J, et al. Tree of thoughts: Deliberate
problem solving with large language models. Proceedings
of the 37th International Conference on Neural
Information Processing Systems. New Orleans: Curran
Associates Inc., 2024. 517.
[19] Besta M, Blach N, Kubicek A, et al. Graph of thoughts:
Solving elaborate problems with large language models.
Proceedings of the 38th AAAI Conference on Artificial
Intelligence. Vancouver: AAAI Press, 2024. 17682–17690.
[20] Topsakal O, Akinci T C. Creating large language model
applications utilizing langchain: A primer on developing
llm apps fast[C]//International Conference on Applied
Engineering and Natural Sciences. 2023, 1(1): 1050-1056.
[21] Du Y, Yin Z, Xie R, et al. Prompt template construction by
Average Gradient Search with External Knowledge for
aspect sentimental analysis[J]. Expert Systems with
Applications, 2024, 238: 122271.
[22] Fleischhacker N, Jager T, Schröder D. On tight security
proofs for Schnorr signatures[C]//Advances in
Cryptology–ASIACRYPT 2014: 20th International
Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, ROC,
December 7-11, 2014. Proceedings, Part I 20. Springer
Berlin Heidelberg, 2014: 512-531.
[23] Zhang Q. An overview and analysis of hybrid encryption:
The combination of symmetric encryption and asymmetric
encryption[C]//2021 2nd international conference on
computing and data science (CDS). IEEE, 2021: 616-622.
[24] BrambleXu. MovieLens 1M Dataset [EB/OL].
[2024-12-10].https://github.com/BrambleXu/pydata-noteb
ook/blob/master/datasets/movielens/ratings.dat
[25] Jain S M. Introduction to Remix IDE[M]//A Brief
Introduction to Web3: Decentralized Web Fundamentals
for App Development. Berkeley, CA: Apress, 2022:
89-126.
[26] Kalodner H, Goldfeder S, Chen X, et al. Arbitrum:
Scalable, private smart contracts[C]//27th USENIX
Security Symposium (USENIX Security 18). 2018:
1353-1370.
[27] da Silva E J L A, de Araújo C S, da Silva Junior J M, et al.
Development of cryptogames with Unity on an Ethereum
Blockchain Test Network: Case Study and Challenges[J].
Journal on Interactive Systems, 2024, 15(1): 549-560.
[28] Barrault L, Bojar O, Costa-Jussa M R, et al. Findings of
the 2019 conference on machine translation (WMT19)[C].
ACL, 2019.
[29] Zhao S, O’Mahony D. Applying blockchain layer2
technology to mass e-commerce[J]. Cryptology ePrint
Archive, 2020.
[30] Optimism. OP Mainet blockchain explorer [EB/OL].
[2025-01-19]. https://optimism.blockscout.com
[31] Arbitrum. Arbitrum One blockchain explorer [EB/OL].
[2025-01-19]. https://arbitrum.blockscout.com
|